Rabu, 30 Mac 2011

An Approach to PCA

An Approach to PCA-Principal Component Analysis (Analisis Komponen Utama)

Terbahagi kepada 2:
1.      EFA
2.      CFA

Take note:
Ø  VARIMAX-assume the factors are not correlated
Ø  DIRECT OBLIMIN- they are correlated
Ø  Standard deviation  ~ signaled which items are NO GOOD
Ø  If using 7 point Likert Scale, SD BELOW 1 (not reliable to distinguish-cannot separate people easily)
Ø  If using 5 point Likert Scale, SD 0.85 and above (reliable to distinguish-can separate people easily)
Ø   SUMMATive score compared to FACTOR score- FACTOR score better


Ø  REASONS FOR USING PCA

Data summarization
l  identify representative variable(s)
l  explore patterns of relationship(s)
l  examine underlying dimensions/factors/ latent variables/constructs
l  define the construct

Data reduction
l  create a new set of variables
l  use a new set of values
l  use composite scores; interval variables

Construct Validation
·         To provide empirical evidence that the data (responses) effectively and accurately measure a given psychological construct

Ø  POSSIBLE RESEARCH QUESTIONS

l  What are the factors that influence the respondents’ perceptions?
l  Are the respondents’ perceptions a multi-dimensional construct?
l  How many latent variables underlie the respondents’ perceptions?
l  What are the underlying dimensions that account for variability of the respondents’ perceptions?
l  Do the results of the hypothesized measurement model replicate those exploratory work which were conducted earlier?


Ø  AN APPROACH TO APPLYING PCA

  1. Develop a measurement model theoretically
  2. Construct research questions
  3. Construct instrument
  4. Select sample à collect data
  5. Run item analysis- cronbach alpha

S5:  Item Analysis-SCALE-RELIABILITY ANALYSIS-MASUKKAN ITEM YANG NAK ANALYSE-KLIK ITEM, SCALE, SCALE IF ITEM DELETED

l  Std deviation: examine items with very
low SD (SD < .1)
l  Alpha if item deleted
l  Overall reliability index
l  Sub-construct reliability index
l  define population
l  random sample
l  adequate sample
l  minimum:  5 respondents per item
l  maximum:  15 respondents per item
l  a sample for cross-validation

  1. Run PCA- factor analysis

7.      S6: Run PCA : DATA REDUCTION-FACTOR-MASUKKAN ITEM YANG NAK DIBUAT FAKTOR ANALISIS-klik univariate-initial solution-koeficient-KMO-klik direct oblimin-rotated solution-save as variable-regression-

a.      Correlation Matrix
b.      KMO, Bartlett’s Test
c.       Anti-image matrix

d.      Communalities matrix
e.       PVE
f.       Pattern Matrix


8.     Evaluate the model fit

  1.   Assessment of assumption : CORRELATED ITEMS


l  Bartlett test of sphericity
l  Overall measure of sampling adequacy (MSA) – MORE THAN 0.5 IS OK
MSA more than 0.5 is OK
l  Individual item MSA

  1.   Number of extracted factors (components)

    1.   Proportion of variance explained


    1.   Number of items for each factor
    2.   Direction and magnitude of factor loading
    3.   Noises & contamination?
    4.   Interpretability of each factor
    5.   Reliability index for each factor


    1. Run validation analysis
    2. Present the results


    Ø  fieldwork + data analysis


    Ø  analyzing & interpreting the results


    Ø  writing the report




    ± 60% PVE, higher % better!
    Variance Explained?
    TOTAL VARIANCE EXPLAINED-KENA BENTANG/TERANGKAN DALAM BENTUK AYAT
lA priori criterion
l  Eigenvalue for each component ≥ 1.00
l  Scree test/plot criterion

Tiada ulasan:

Catat Ulasan